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The unfolding process of a helical heteropeptide is studied by computer simulation in explicit solvent. A
combination of a functional optimization to determine the reaction coordinate and short time trajectories
between “milestones” is used to study the kinetics of the unfolding. One hundred unfolding trajectories along
three different unfolding pathways are computed between all nearby milestones, providing adequate statistics
to compute the overall first passage time. The radius of gyration is smaller for intermediate configurations
compared to the initial and final states, suggesting that the kinetics (but not the thermodynamics) is sensitive
to pressure. The transitions are dominated by local bond rotations (the ψ dihedral angle) that are assisted by
significant nonmonotonic fluctuations of nearby torsions. The most effective unfolding pathway is via the
N-terminal.

Introduction

The phenomenon of peptide dynamics has been the subject
of intensive studies from both experimental and theoretical
perspectives. Computer simulations have the potential to provide
a wide range of information about this process, yielding
microscopic insight into the pathways and rates of conforma-
tional transitions, including the characterization of rarely
sampled intermediates.1,2 The progress in computational studies
of peptide dynamics and folding may be divided into several
stages, with progressive improvements in the methodology and
investigations of larger systems. Early studies used direct
molecular dynamics (MD) and free energy simulations of
secondary structure elements,1 followed by extensive simulations
of helices, sheets, and miniproteins with first implicit and later
explicit solvent models.1,2

Early studies included following unfolding of helices and
turns, performed at elevated temperatures or with umbrella
sampling.1,3 These simulations found individual helical hydrogen
bond breaking occurring at tens to hundreds of picoseconds and
stabilities of sheets significantly greater than for helices.
Pioneering work involved 2.2 ns length explicit solvent MD
trajectories of YPDGV, a turn-forming pentapeptide, for which
folding and unfolding were found on the nanosecond time scale,4

and clustering was applied to analyze the conformational space
and structural transitions.5 Other studies employed the LES
methodology for more comprehensive exploration of confor-
mational space and determination of peptide structures
CHDLFC5 and SYPFDV,6 illustrating significant correlation
between the experimental structure and optimized peptide
conformations.

More extensive calculations were initially performed using
implicit solvation.2 For the blocked (AAQAA)3 peptide, mi-
crosecond simulations with a solvent model involving a distance-

dependent dielectric function and a solvent-accessible surface
area term described the conformational free energy surface and
folding as a function of temperature.7 A single free energy
minimum was found at all studied temperatures, corresponding
to a folded state in the low-temperature range and an unfolded
state at higher temperatures. Cluster analysis showed that folding
proceeded through multiple nucleation events. Simulations by
Duan and co-workers using the generalized Born (GB) implicit
solvent model suggested that folding of alanine-rich helical
peptides proceeded through several stages: three stages for the
blocked YG(AAKAA)2AAKA peptide8 and two for the Fs-21
peptide, AAAAA(AAARA)3A.9 Important results for folding
of helices, sheets, and small proteins were obtained using replica
exchange MD (REMD).2 These studies showed that explicit
solvent REMD can correctly predict the global free energy
minima for small model helix-forming10 and hairpin-forming11,12

peptides and others.13 Good agreement between the calculated
and observed melting temperature of Fs was obtained after
adjustment of the AMBER force field.10 The time scales for
hairpin formation were estimated to fall in the microsecond
range using energy landscape theory.11 REMD with the GB/
surface area (SA) implicit solvation gave incorrect results in
some cases, predicting a helix-turn-helix structure for Fs and
hydrophobic residues on the surface for the harpin-forming GB1
peptide.2 In our joint experimental-computational study of the
WH21 peptide,14 we found generally good agreement between
the GB/SA REMD simulations employing the CHARMM15

force field and measured properties. The simulations found that
the R helix was the system free energy minimum at low
temperatures, and predicted an enthalpy change of -10 kcal/
mol and an entropy change of -30 cal/(mol K) for the folding
transition, quite similar to the experimental values of -11.6
kcal/mol and -39.6 cal/(mol K).14

Significant progress in enhancing the rate of conformational
exploration was achieved with introduction of the REMD
method.2,16 REMD aims at thermodynamics and not at kinetics,
which is the focus of the current investigation. Recent techniques
to study kinetics include hyperdynamics,17,18 transition path
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sampling,19 and sampling biased along an order parameter such
as the TIS,20 PPTIS,21 forward flux,22 and milestoning.23

Current computer power enables simulation of the folding
equilibrium of peptides in aqueous solution using MD. Examples
are a �-hexapeptide,24 CW1 and CW2,25 and Ala5.26 With
application of highly distributed computing systems, a signifi-
cantly longer peptide, the 21-residue Fs system, has been
studied.27 The overall picture is that methods for equilibrium
simulations are well developed, with accuracy limited by
potential function development,2,27 while a systematic compu-
tational description of peptide folding kinetics is only beginning
to emerge.

In the present study we use the reaction path (RP) approach.
RP studies of the kinetics and thermodynamics of peptide
conformational transitions were initiated by Czerminsiki and
Elber28,29 and were (significantly) exploited further by Wales.30

A variant of the peptide we investigate in the present study was
studied by stochastic path optimization by Cardenas and Elber.31

Comprehensive sampling of conformational space is simpler
in the RP approach compared to MD simulations. However,
significant questions remain. Lack of explicit solvent, inaccura-
cies of the models for effective solvation (especially for
kinetics), and the use of energy minima (with implicit solvent)
instead of free energy add to the uncertainties of these
investigations.

Milestoning23,32-35 aims to solve some of the RP problems
by combining features of the RP and MD. Short time trajectories
are computed in the neighborhood of the reaction coordinates,
and a coarse-grained stochastic model for the motions is
developed.23 This strategy makes it possible to investigate the
kinetics in much larger systems.34 In the present study our efforts
focus on early events in the unfolding of a helical peptide.
Unfolding is more appropriate for a study with the reaction path
approach than folding. This is because, close to the unfolded
state, the number of alternative conformations is large and the
reaction coordinates create a large network. The network of
unfolded structures is dense and more difficult to describe with
few reaction coordinates. The conformations closer to the folded
state and states lower in free energy are likely to be sparse and
accessible to this approach as suggested also from analysis of
a very large number of trajectories.27 Future studies will address
the more comprehensive structure of the folding network.

Theory

Reaction Paths. The question of how to choose an RP to
describe a complex condensed-phase problem is an important
challenge that attracted and continues to attract timely research.
There are two reasons for the significant interest in the RP. The
first is qualitative understanding of the reaction progress, and
the second is quantitative comparison to experimental data.

Atomically detailed simulations retain the coordinates of all
atoms as a function of a parameter (typically time), monitor
the progress of the reaction, and allow for comprehensive data
mining of the reaction dynamics. However, the comprehensive
picture is not something we can easily understand and use.
Typically we describe and quantify the process using a model
of reduced complexity. We discuss bond breaking in aqueous
solutions and not the motion of individual water molecules
surrounding the reaction center. We describe complex confor-
mational transition in peptides and proteins by a sequence of
events that include local bond rotations, hydrogen bond forma-
tions, and shifts of secondary structure elements (see for instance
ref 36). The sequence of events can be tested experimentally
by probing the time evolution of different degrees of freedom.37

We do not consider in detail the Cartesian displacements of
protein atoms.

The qualitative information extracted from the RP provides
a simple, easy to understand picture of the process. However,
to study function, we need to connect the structural and energetic
information with kinetic and thermodynamic properties. This
second task of linking structure to function can also be addressed
by the RP. A widely used approximate approach is the transition-
state theory (TST). If the energy barrier separating the reactants
and product is significantly larger than kT, a rate constant can
be computed with different variants of this theory and correc-
tions to it.38

If our interest focuses on qualitative insight of reaction
mechanisms, then many options are possible that vary from
theoretically derived most-probable Brownian trajectories,39 or
trajectories that maximize the flux,40 to heuristic such as targeted
molecular dynamics41 or an assumed internal coordinate.
However, our focus in the present paper is two-fold.

The first goal is indeed to study mechanisms. However, we
also aim to obtain a quantitative estimate of the rate of folding
(or unfolding) along particular reaction coordinates. The RP of
choice in the present study is the steepest descent path. In many
calculations of reaction coordinates one ignores the kinetic
energy of the system and determines the RP according to the
properties of the potential energy surface. For example, the
steepest descent path (SDP) is widely used in chemistry and is
a continuous curve with a low-energy barrier that connects the
reactants and the products. At any point along the SDP we find
at most one negative eigenvalue of the second-derivative matrix
of the potential energy. An important advantage of an SDP is
that it allows the test of a concrete mechanism. The disadvantage
of the SDP approach lies in the multiplicity of possible paths.
The three paths considered in the present study examined
unfolding mechanisms that are initiated differently.

Given the above classification, we realize that there are two
types of reaction coordinates to simulate folding. The first type
(widely used in the past in studies of folding) is of a collective
variable selected by intuition, for example, the end-to-end
distance of a polymer or the number of native contacts. The
second type, which is used in the present study, is the SDP
widely used in studies of small molecules. These two classes
reflect different philosophies of the RP.

The collective variable usually corresponds to a single-order
parameter that monitors the progress of the reaction. Indeed the
number of native contacts is a useful probe for the folding/
unfolding state of the system and was used extensively in
theoretical and computational studies of protein folding.42

Nevertheless, there are two difficulties in the use of collective
variables as reaction coordinates in computational studies of
kinetics.

The first is sampling in the orthogonal space to the reaction
coordinate. For the unfolded state (zero native contacts) the
number of conformations is extremely large, which makes
computational exploration of this state (for a fixed number of
native contacts) very difficult. It also makes the calculation of
kinetics problematic, since one usually assumes a separation of
time scales between times for motion along the reaction
coordinate and times for motion in the direction perpendicular
to it. For the vast space orthogonal to the reaction coordinate
such separation is hard to justify.

The second difficulty is qualitative interpretation of the results.
Typical collective variables tend to average multiple mechanisms
and mask interesting dynamics at the molecular level. For
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example, the end-to-end distance cannot capture the importance
of a specific bond rotation.

When an SDP is used as a reaction coordinate, we have a
different scope in mind. The SDP is constructed numerically
as a set of images along a line. The line has a minimum energy
barrier separating the reactants and products. We have no
information on the properties of the system far from the curve
connecting the set of images. We therefore approximate the
space orthonormal to the reaction coordinate by a hyperplane
and assume that trajectories do not deviate significantly from
the SDP line. It is easier to justify time scale separation within
this picture since the space orthogonal to the reaction coordinate
is typically small and can be explored quickly. Mechanisms are
also easier to identify within the SDP picture. The challenge is
that a single SDP cannot provide a comprehensive view of the
process. Other SDPs may have significant contributions, and
pipes may cross and split, creating a complex network of
transitions. Furthermore, the relative weights of different SDPs
need an extra calculation, a task left for future work.

We generate the SDPs of the present study from initial
guesses. The initial paths were selected from equilibrium replica
exchange simulations in implicit solvent. The details of these
studies were reported elsewhere.14 Replica exchange calculations
in conjunction with implicit solvent models explore alternative
conformations rapidly and offer a rich bank of alternate
structures to choose from to build initial guesses for the folding
pathways.

Once an initial guess for the reaction coordinate is available,
we optimize the path in two steps. In the first step the self-
penalty walk (SPW) algorithm is used.43 The SPW algorithm
is a robust and fast algorithm that provides reasonable ap-
proximations to the SDP. The output path from the SPW
algorithm is used as a starting point for an optimization of
another functional that rigorously provides the steepest descent
path:39

F[q(l)] ) ∫XR

XP √∇Ut∇U dl (1)

The reaction coordinate is q, the gradient of the potential energy
is ∇U, XR and XP are the coordinate vectors of the reactants
and the products, respectively, and dl is a length element along
the reaction coordinate dl ) (dXt ·dX)1/2. It was shown in ref
39 that a minimum of F(q(l)) is indeed the SDP. We also called
the algorithm of eq 1 “optimization of a scalar force” to indicate
that we optimize the norm of the potential gradient (and not
the potential gradient itself). A discrete representation of the
functional was introduced, making it possible to compute
numerically the SDP.

The above functional form is particularly convenient to study
complex systems. One of the reasons is that the end points are
fixed, ensuring a “successful” transition from reactant to product.
This is an outcome that is hard to get in initial value calculations
of reaction coordinates. In that sense eq 1 is similar to other
boundary value formulations of the SDP such as the LUP
algorithm44 and numerically enhanced implementations of LUP
(the NEB45 and the zero temperature string46). The approach in
eq 1 is different from those of the above three since it is
formulated as a minimization of a functional. Having a target
function at hand enhances stability and allows in principle larger
steps. It also makes it possible to use stochastic optimization
techniques (such as Monte Carlo) for the SDP without explicit
calculations of the derivatives of the functional. Nevertheless,
the algorithm in eq 1 is in general slower than approaches that
rely on potential derivatives. In our case, since the calculations
of the reaction path are only a negligible component of the

computational cost, we have used directly eq 1 as implemented
in the molecular dynamics modeling package MOIL (module
sdp).47 The output of the calculation is three SDP paths that are
used in the milestoning calculations.

Milestoning. Milestoning is an approximate simulation
technique to study kinetics at long time scales while retaining
the atomically detailed description of the system.33,34 It is based
on the availability of milestones, interfaces along the reaction
pathway connecting the reactants and products (Figure 1).
Consider an exact trajectory that is initiated at the reactants and
ends at the products. It may pass many times back and forth
through the milestones, but it “hits” the product state only once.
The product state is absorbing, and the trajectory is terminated
after the first touch of the final milestone.

An ensemble of trajectories of this type provides the reaction
rate as a function of time. For example, the number of molecules
in the reactant state NR(t) at time t is frequently modeled by an
exponential decay as a function of time:

NR(t) ) N0 exp[-λt] (2)

The number of trajectories initiated in the reactant state is N0,
and λ is the apparent rate constant. The difficulty in estimating
rate constants by straightforward simulations of individual
trajectories and fitting the data against eq 2 is the cost. Because
of limited computer power molecular dynamics trajectories are
typically restricted to the submicrosecond time scale. An
ensemble of such trajectories would be (of course) significantly
more costly. Milestoning makes it possible to compute the
ensemble of reactive trajectories at a fraction of the cost, which
in the present example is at least 1000.

In milestoning we assume that an equivalent representation
of reactive trajectories can be assembled from short trajectories
between milestones (Figure 2). Trajectories are renewed at the
interfaces by sampling from a predetermined stationary distribu-
tion at the interface. In the present study we restrict our attention
to conditions close to thermal (canonical) equilibrium. However,
any known stationary distribution can be used, even far from
equilibrium, as long as it represents a steady flux. The renewal
is done with a fixed value of the reaction coordinate in the
hypersurface orthonormal to the reaction coordinate at i and
not necessarily at the point in which the trajectory we wish to
renew was terminated. This loss of memory in the interface
differentiates milestoning from other transition path sampling
procedures (such as TPS,19 TIS,20 and forward flux,22 which
continue the terminated trajectory from the same point at which
it was stopped). The spatial memory loss of milestoning can be
made exact with a special choice of the reaction coordinate and

Figure 1. A schematic view of milestoning. The red arrow is the
reaction coordinate, and in green we draw an exact reactive trajectory
that is initiated at the reactants (R) and is terminated at the last interface
(P). The interfaces are shown as thick black lines orthonormal to the
reaction coordinate.
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the dynamics.35 However, in general it is an approximation. The
approximate resampling at the interface overcomes a significant
statistical problem (getting a statistically meaningful number
of trajectories to terminate at a particular interface). It allows
us to push the time scales that we can study with molecular
dynamics significantly further than is possible with other
algorithms. It also allows us to investigate processes that do
not follow exponential kinetics and mix diffusion and hopping
over barriers. Below we consider in more detail the approxima-
tions made in milestoning, and then we discuss why the
calculations are significantly more efficient.

There are two ways of thinking about the above approxima-
tion (Figure 2).

The first considers a single trajectory. If the time of relaxation
to equilibrium within the hyperplane perpendicular to the reaction
coordinate is much shorter than the transition time between the
milestones, then the relaxation time within the plane can be ignored.
The total reaction time is just the sum of transition times between
the milestones. This view suggests a clear way to test the
milestoning approximation and to improve it. Since we are working
with a finite number of interfaces, increasing the distance between
the interfaces will better satisfy the separation of the time scale

(the time scale for the relaxation within the interface remains the
same, while the time scale for the transition between the interfaces
increases as we increase the separation). However, the computa-
tional efficiency of milestoning decreases with a decrease in the
number of interfaces. Therefore, a compromise between accuracy
and efficiency should be made.

The second view, which is subtler and discussed extensively
in ref 35, is based on the time evolution of the probability
density. Instead of the motion of one trajectory at a time, we
consider the time evolution of an ensemble of trajectories. Let
the probability density of trajectories that terminate in the
hyperplane perpendicular to milestone i be Fi(Γ), where Γ
denotes the orthogonal hypersurface. This probability density
is our best (exact) choice for renewing the trajectories at i.
Unfortunately, this probability density is not known exactly
except in special cases.35 The probability density is therefore
approximated by an analytical function or using a simulation.
An analytical approximation we have used in the past is that of
an equilibrium distribution.33,34 Of course the terminating
trajectories generate samples of the exact distributions at the
nearby interfaces, and the approximate form of the density can
be tested for consistency. A computational technique that
directly generates these distributions, and is still significantly
more efficient than straightforward molecular dynamics, was
proposed recently48 and is a very promising direction.

We define the mean first passage time (MFPT) 〈t〉 as the time
averaged over an ensemble of trajectories that are initiated at
the reactants (milestone 1) and terminated at the products
(milestone N). The last milestone (products) is absorbing. The
MFPT captures characteristics of the time evolution of the
process. For example, if the reactant population, NR(t), decays
exponentially as a function of time, NR(t) ) N0 exp(-λt), then
the rate constant λ is given by 1/〈t〉. To compute the overall
MFPT, we use the formula developed in ref 32, which was
illustrated in ref 33 and rederived in ref 35. For completeness
of this paper we define the relevant variables, explain how they
are extracted from the simulation, and provide the final formula.

We define Kij(τ) as the probability density that a trajectory
initiated at milestone i at time τ′ ) 0 will transition to milestone
j at time τ′ ) τ. The time integral ∫0

∞Kij(τ) dτ ) pij is the
transition probability from state i to state j. The sum over all
final states is normalized, ∑jpij ) 1. The last (products) milestone
is absorbing, and pNN ) 1. We also define the transition matrix:

[K(τ)]ij ) {Kij(τ) i * j
0 otherwise } (3)

The mean first passage time is then given by

〈t〉 ) 1t · ∫0

∞
τK(τ) dτ · [I - ∫0

∞
K(τ) dτ]-1 ·Qi (4)

The symbols 1t, I, and Qi are a vector of all ones (1, 1,..., 1),
the identity matrix, and a projection vector onto the initial
milestone (1, 0,..., 0)t, respectively. From eq 3 it is obvious that
the transition matrix K plays a dominant role in determining
the kinetics of the system. Indeed in our previous papers on
milestoning and in the present study we estimate this matrix
numerically by sampling. We initiate trajectories at each
milestone i according to a Boltzmann distribution, constrained
to the hypersurface at i, Fi(Γ):

Fi(Γ) dΓ ) Z-1δ(q - qi) exp[-�U(X)] dΓ

Z ) ∫ dX exp[-�U(X)]
(5)

We denote the reaction coordinate by q, the complete coordinate
space by X, and the space complementary to q by Γ. We record

Figure 2. A schematic picture of the milestoning approximation. A
complete exact trajectory is shown in green as in Figure 1. Also shown
are fragments of a trajectory in black (a). There are three trajectory
fragments that we “glue”. The assumption is that the relaxation times
in the hyperplane perpendicular to the reaction coordinate are short.
Therefore, we can sample from equilibrium at the interface, and the
short relaxation times at the interface (compared to the transition time
between the milestones) can be ignored. Since we have an ensemble
of trajectories, it should not matter (provided that our assumption is
correct) where we initiate the trajectory at the interface. Also shown
in blue lines (b) are the probability densities of terminating trajectories
at the milestones. If we know the probability densities of the terminating
trajectories, we can sample the fragmented trajectories directly from
these distributions. In previous23,33,34 and current applications of
milestoning, we assume that equilibrium densities can approximate the
terminating distributions. A distribution that provides an exact first
passage time is found in ref 35, and a new intriguing numerical protocol
to sample these distributions was proposed in ref 48.
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the termination times of the trajectories at milestone j. The
number of termination events from milestone i to milestone j,
L(ifj;τ,τ+∆τ), is counted during the time interval [τ,τ+∆τ].
We divide L(ifj;τ,τ+∆τ) by the total number of trajectories
initiated at i, Li, to estimate Kij(τ)∆τ with the proper normaliza-
tion:

Kij(τ)∆τ = L(ifj;τ,τ+∆τ)
Li

(6)

Since all trajectories initiated at i terminate in the limit of long
time we also have

Li ≡ ∑
j,k)1,...,∞

L(ifj;k∆τ)∆τ

Estimating the elements of the transition matrix and their time
dependence is necessary if the complete time evolution of the
system is of interest (e.g., compute NR(t) for a general, not
necessarily exponential, process). The theory and some examples
of these general processes are discussed in detail in ref 33. The
essence is a numerical solution of an integral equation for the
probability of being at milestone i at time t. These general
calculations can be expensive since they require significant
sampling of the three-dimensional tensor Kij(τ) (including the
time “dimension”).

On the other hand, eq 4, which provides the overall mean
first passage time, includes only integrals of the probability
density, Kij(τ), that are easier to estimate and require significantly
less statistics. We have estimated the MFPT in the study of the
allosteric transition of scapharca hemoglobin34 using a relatively
small number of trajectories. We focus on the MFPT also in
the present study of folding/unfolding of a helical peptide.

So far we have discussed the theory and the implementation
of milestoning. However, we have not discussed why mileston-
ing is beneficial compared to straightforward molecular dynam-
ics. In ref 33 it was argued that the computational gain of using
milestoning compared to straightforward molecular dynamics
is proportional to the number of milestones if the process is
diffusive and is exponential in the number of milestones for
activated transitions (states separated by a significant free energy
barrier). For the completeness of this paper we repeat the
qualitative arguments below. We also illustrate (as part of this
paper) that the milestoning calculations of helix folding are more
efficient than straightforward molecular dynamics by a factor
of thousands, enabling meaningful calculation of rates in
complex systems.

Consider first a diffusive process along a (one-dimensional)
reaction coordinate. If the diffusion is on a “flat” energy surface
(we shall consider the other limit next), then the time t it diffuses
along a path length Y would be proportional to Y2 (from the
relationship Dt∼Y2, where D is the diffusion constant). In
milestoning we consider diffusion between the M interfaces.
Each pair is roughly separated by a Y/(M - 1) ≈ Y/M distance.
The time of transition between two interfaces is therefore
proportional to (Y/M)2. The total time of a transition between
M interfaces is M(Y/M)2 ) Y2/M.

The computational time to observe a transition in milestoning
is therefore a factor of M shorter than a straightforward
trajectory. We typically use close to 100 milestones, so the
computational gain is substantial. Consider next a significant
barrier separating the two minima. If the system is close to
thermal equilibrium, then the probability of making it to the
top of the barrier is proportional to exp[-�∆U], where � is the
inverse temperature and ∆U the barrier height with respect to
the reactants. However, if we divide the reaction path from the

reactants to the top of the barrier by M milestones, then the
probability of reaching the next milestone is about exp[-�∆U/
M]. Since we initiate the trajectories at a milestone, the
computational cost of computing the corresponding ensembles
is proportional to a sum (instead of the product we have in MD):

cost(milestoning) ∝ ∑
i)1,..,M

exp[�∆U/M]

cost(MD) ∝ exp[�∆U] ) ∏
i)1,...,M

exp[�∆U/M]

(7)

For a typical number of milestones (about 100), the gain can
be staggering.

Computational Protocol

Selection of Initial Seeds for the Reaction Coordinates.
The use of a sample of SDP pathways that we propose in the
present paper allows us to test concrete mechanisms, test their
consistency with experimental data, and learn about the
characteristics of the transition. The guiding trajectories for helix
unfolding pathways were generated using previous REMD
simulations of the blocked WH21 peptide14 (sequence
WA3HA3RA4RA4RA2). Both the N-terminal and C-terminal are
uncharged. The N-terminal is capped with a COCH3 group,
while the C-terminal is terminated with an NH2 group. The
simulations used eight replicas with temperatures spanning
280-450 K, a GB/SA continuum solvation model, and the
CHARMM program.15 In a 30 ns long REMD trajectory starting
from an R-helical structure, conformational equilibrium was
reached after 15 ns. For the unfolding transition this simulation
predicted a melting temperature Tm of 330-350 K, an unfolding
enthalpy ∆H ) -10 kcal/mol, and an entropy ∆S ) -30 cal/
(mol K). These values were in reasonable agreement with the
experimentally observed values of Tm ) 296 K, ∆H ) -12
kcal/mol, and ∆S ) -40 cal/(mol K).14 Our second REMD
simulation was 15 ns in length and started from the extended
structure. In this case, the helical conformation was first attained
after ca. 2.8 ns and equilibrium was reached after 10 ns.

We generated three helix-coil transition paths from the
structures sampled in the GB/SA REMD simulations. For path
1 we employed the sample of 37 500 structures from the 367
K replica in the 30 ns (“equilibrium”) simulation, classified by
the root-mean-square deviations (rmsd’s) of backbone atoms
from an ideal helix and the number of R-helical hydrogen bonds
(NAHB) for each structure. The subset with NAHB ) 8 was
hierarchically clustered on the basis of the backbone rmsd using
the MMTSB tool set.49 The path was initiated by selecting a
random structure from the largest cluster, and a series of
intermediates was then identified by analysis of pairwise rmsd
and NAHB, producing a chain of 16 structures spanning the
range of NAHB ) 17 (corresponding to the R-helix) to NAHB
) 0 (fully unfolded state). For the second path, we selected
three structures from the 298 K replica of the 30 ns equilibrium
REMDsone corresponding to the R-helix (NAHB ) 17), the
second to the unfolded C-terminal portion of WH21 (with
NAHB ) 8 and hydrogen bonds formed in the N-terminus only),
and the third to the coil state (NAHB ) 0). The third path was
constructed from the first 2.8 ns of the 298 K replica of the 15
ns (“folding”) simulation in which the helix is formed from an
extended conformation. In this case we again used rmsd and
NAHB analysis to find 15 structures spanning from NAHB )
17 to NAHB ) 0.

In our analysis we did not count the hydrogen bonds of the
blocking groups. The backbone rmsd between the nearest
neighbors in the chains varied from 0.7 to 2.5 A. The paths
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selected were arbitrary, in the sense that they do not correspond
to any directly simulated transitions, but represent roughly
random walks through configuration space constrained to follow
a roughly sequential, or zipper, hydrogen bond breaking/
formation mechanism with limited rmsd changes between
neighbors. We chose the generation methods to make the paths
as different as possible. Thus, for path 1 the initial structures
were sampled from above the simulated Tm, where the popula-
tion of partially unfolded intermediates is higher than at 298
K, and the path was required to pass through the most highly
populated NAHB ) 8 intermediate. Path 2 was based on the
same REMD simulation, but only three structures from the 298
K replica were employed in the initiation, and the intermediate
was arbitrarily selected to correspond to the unfolded C-terminal
of WH21. Finally, path 3 was initiated on the basis of the
structures sampled in the 298 K replica of the folding simulation,
using that part of the trajectory in which the system first converts
from coil to helix in the course of the random walk generated
by the combined MD and MC that are part of the REMD
algorithm.

In the next stage of path generation, the initial chains
underwent iterative interpolation and optimization using the SDP
algorithm, producing paths with 77 milestones for path 1, 129
milestones for path 2, and 113 milestones for path 3. These
paths are complete in the sense that they start at the folded
(helix) state and end at the unstructured (zero hydrogen bonds)
conformation. The number of alternative paths grows very
rapidly as a function of the distance from the folded state.
Therefore, time scales calculated along one-dimensional paths
are likely to be overestimated, since transition to the unfolded
state is made to any of many unstructured conformations.
Therefore, most of the detailed analysis presented in the Results
and Discussion is done on the path in the neighborhood of the
helix. There the number of alternative paths is smaller and time
scale estimates are more likely to be meaningful.

Path Calculations. Optimization of the initial guesses for
intermediate structures along the paths follows. To speed up
convergence, the minimum energy paths were computed in two
steps. The structures along the guess path were fed first to the
SPW algorithm43 (module chmin in MOIL47 and https://
wiki.ices.utexas.edu/clsb/wiki). The optimized paths are com-
puted with the discrete representation of a line integral with
equidistance restraints introduced by Elber and Karplus50 and
further refined by Czerminski and Elber.51 This type of restraint
was adopted by the NEB45 and by the Maxflux40 algorithms for
calculations of reaction coordinates. In brief, the line integral
is approximated by a finite difference expression:

S[X(l)] ) ∫XR

XL G(X(l)) dl = ∑
i)1

N-1

G(X(li))∆li,i+1+

∑
i

λ(∆li,i+1 - 〈∆li,i+1〉)2 + ∑
i

F exp[- κ∆li,i+2
2

〈∆li,i+2〉
2] + EC

(8)

In the context of the present paper the integrand G(X(l)) can be
either U(X)/L in the SPW algorithm51 (L is the path length) or
(∇Ut∇U)1/2 in the calculations of the SDP.39 The discrete length
element is given by ∆li,i+1 ) [(Xi+1,s - Xi,s)t(Xi+1,s - Xi,s)]1/2.
The path constraints apply to only a subset of the coordinates
that are the Cartesian positions of the CR atoms of the peptide.
This subset is denoted by the index “s” in the above formula
for the distance ∆li,i+1. The parameter λ restrains all length
elements to be similar to the average 〈∆li,i+1〉, and the term with

the next nearest neighbor distance (∆li,i+2) reduces the path
curvature. The restraint on the next nearest neighbor distance
was not used in the SDP calculations. The last term (EC) is the
Eckart conditions expressed as six linear constraints33 (three on
translation and three on overall rotations). The path is optimized
with a conjugate gradient minimizer or simulated annealing
subject to the above linear constraints as a function of all the
intermediate structures Xi.

Structures along the path were added between intermediate
conformations to ensure that the difference between sequential
structures did not exceed 0.6 Å rms after optimal overlap and
optimization of the functional. The results of the SPW optimiza-
tion were input to compute three different SDP paths with a
discrete form of the functional of eq 8.39 The optimizations are
assumed converged when no significant changes in the structures
are observed with more optimization cycles.

The paths are computed using the package MOIL with the
generalized Born model for solvation,52 but are otherwise in a
vacuum. Water molecules are not included in the calculation
of the SDP since the flat energy surface for solvent molecules
and their permutations suggest low-energy barriers and high
degeneracy for their motions. The floppy solvent structure at
room temperature does not support the use of a minimum energy
path model, and the generalized Born model mimics a potential
of mean force more appropriate in the present context. Explicit
solvation is (of course) included in the calculations of the short-
time milestoning trajectories.

Milestoning Calculations. To compute short terminating
trajectories between milestones, we follow two steps: (i) sample
configurations in the milestones to generate an initial stationary
distribution at the interfaces and (ii) integrate trajectories
initiated from the sample of step I and Maxwell velocity
distribution until the trajectories terminate on nearby milestones.
Once a set of terminating trajectories and their corresponding
time lengths are recorded, we use eq 4 to estimate the overall
first passage time of the early events of the folding/unfolding
transition of the peptide.

In preparation for step i, we solvate the peptide in a cubic
box of water of 41.83 Å3 with periodic boundary conditions for
each peptide configuration, q(li), along the SDP. The water
model is TIP3P53 (the geometry of the water molecules is fixed
with the matrix-SHAKE algorithm54,55). The force field is united
atom OPLS56 as implemented in our code MOIL.47 Four chloride
ions were added to ensure electric neutrality, and particle meshed
Ewald57 was used to sum electrostatic interactions. The Lennard-
Jones interactions were truncated at 8 Å, and the time step was
0.5 fs. We first equilibrate the solvent for 20 ps around the frozen
configurations of the peptide (from the SDP calculations). The
system is coupled to a heat bath by velocity scaling in the first
20 ps (velocity scaling or the isokinetic ensemble ensures
canonical ensemble of configurations58). The remaining 20 ps
was run in the NVE ensemble. The system is sufficiently large
so that the differences between an assigned temperature and
computed temperature from the average kinetic energy are small.
The standard deviations of the temperatures in the NVE
ensembles along the paths are less than 10 K′. The last
coordinate sets of the trajectories of solvent (plus frozen peptide)
are saved and used as starting points for simulations to generate
the stationary distributions at the interface

The NVE simulations in the hyperplanes orthogonal to the
reaction coordinate are ordinary molecular dynamics simulations
of the peptide and solvent supplemented by linear constraints.33

The simulation parameters are the same as in the previous
simulations equilibrating the solvent except that now the peptide
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is allowed to move. The MD trajectories remain in the designed
milestone through application of the constraint

(Xs - qsi) · esi ) 0 esi =
qsi+1 - qsi-1

|qsi+1 - qsi-1|
(9)

The constraint is enforced with Lagrange’s multiplier (appendix
of ref 33). The coordinate vector of the system is X, and its
projection onto the subset of the selected variables (the Cartesian
positions of the CR atoms) is Xs. The unit vector esi is normal
to hyperplane i along the reaction coordinate. The normal (which
is esi) and a point in the hyperplane (which is qsi) determine the
position of the interface uniquely. Since the constraint is
expressed in Cartesian coordinates, it is also necessary to fix
the global orientation and position of the molecule. This is
achieved by six (linear) constraints (derived from the Eckart
conditions) in addition to the path constraints above. This is
similar to the discrete path calculations discussed in eq 8 and
discussed in detail in ref 33. The simulations were run in the
NVE ensemble for 50 ps for each location along the reaction
coordinate, and structures were saved every 0.5 ps. For each
qsi, we therefore have a sample of 100 conformations that are
used to initiate the terminating trajectories between the milestones.

In the second phase, we compute molecular dynamics
trajectories without the hyperplane constraint (eq 9) while
retaining the six constraints on overall molecular orientations.
We keep the six constraints to enable convenient determination
of termination times. Trajectories that are initiated at qsi are
stopped, and their times are recorded when (Xs - qsi-1) · esi-1

) 0 (termination at the previous milestone) or when (Xs -
qsi+1) · esi+1 ) 0 (termination at the next milestone). Since the
vectors qsj and esj are expressed in Cartesian coordinates which
are sensitive to overall molecular motions, it is useful to
constrain the CR to a fixed overall orientation. The constraints
used in phase ii are softer than the constraints used in the
sampling phase, and therefore, a larger time step (1 fs) is used
without significant loss of accuracy. The rest of the simulation
parameters are kept the same.

Typically trajectories are terminated after a few or tens of
picoseconds. However, in extreme cases tens of nanoseconds
are observed as well. Nevertheless, the trajectory times are much
shorter than the computationally estimated time scale for folding
or unfolding, which is in the microseconds (along one-
dimensional paths), illustrating that milestoning is indeed a lot
more efficient than straightforward molecular dynamics. For
example, the accumulated time of all trajectories of the
milestoning calculation of the first SDP is 68 ns. The computed
first passage time for the transition was 2 µs, significantly longer
than the time that was required to compute it.

The actual number of milestones that are finally used in the
estimate of the overall mean first passage time may be smaller
than the number of structures generated along the SDP. To
improve the milestoning approximation, we make sure that the
trajectories are not too short and memory loss between initiation
of the trajectory and its termination is indeed achieved.33 In
practice, we found that the loss of velocity correlation is usually
sufficient to obtain accurate results for the mean first passage
time. We further determine empirically that for aqueous peptide
systems 400 fs is usually enough to decorrelate the velocity
along the direction parallel to the reaction coordinate. Therefore,
if we sample termination times shorter than 400 fs between
sequential milestones, we increase the separation between the
milestones by taking one out. For example, rather than comput-
ing termination between milestones i and i + 1, we compute
them between i, and i + 2. This extra calculation is not

expensive since the trajectories below 400 fs are cheap to
compute and add only little to the overall cost.

Results and Discussion

We consider the dynamics of helix unfolding along three
reaction coordinates. In the first path (path 1) we consider
unfolding initiated at the N-terminal. In the second path (path
2) the unfolding is initiated at the C-terminal, and in the third
(path 3) the helix breaks in the middle, creating two short helices
in the first step. Snapshots along the paths are shown in Figure
3. We consider in the text below the initiation of unfolding and
the complete unfolding pathways.

When does the first step of unfolding end? We have used
quantitative and qualitative measures to define the end of the
beginning. First, we consider the reverse of the reactive flux in
the milestoning calculations. We seek milestone i, which is
closest to the first milestone of the helical conformation such
that the direction of the net flux of trajectories is reversed. Let
n+ be the number of trajectories that are terminating in the
forward direction and n- the number of trajectories terminated
in the backward direction. We seek a pair of milestone i and i
+ 1 such that (n+

i - n-
i )(n+

i+1 - n-
i+1) < 0. Near a stable

conformation the flux of trajectories points to that state. A
change in the direction of the net flux suggests a transition over
the top of a free energy extremum. The net flux is estimated by
the number of trajectories that terminate in the next milestone
minus the number of trajectories that terminate in the previous
milestone. In Table 1 we list the number of trajectories between
milestones that led to our decision in paths 1-3. Second, we
verify this choice by visual inspection, requiring significant
structural changes in the subset of coordinates at q(li), where li

is the index of the transition point. In retrospect the verification
was not necessary since the flux condition works well. The
“initiation” step of helix unfolding spans milestones 1-14 in
the first path, milestones 1-58 in path 2, and milestones 1-13
in the third path. In the analysis below we focus on path 1,
which provides a time scale consistent with experiment. The
more significant barriers (and longer time scales) of paths 2
and 3 cannot be explained by a single dominant interaction,
and the excess energy (and free energy) is spread over many
degrees of freedom.

Calculations of Rate. The calculations of the complete
unfolding rate along the three paths probe different processes
compared to experiment. The calculations consider a transition
from the helix into the neighborhood of only one unfolded
conformation for each of the paths. The experiment considers
a transition from the helix into any of the unfolded structures.

TABLE 1: Number of Trajectories Initiated at a Milestone
and Terminating at (a) the Milestone Forward and (b) the
Milestone Backwarda

no. of trajectories
forward/total

Path 1
milestone before transition 44/100
milestone after transition 74/100

Path 2
milestone before transition 116/133
milestone after transition 21/100

Path 3
milestone before transition 34/100
milestone after transition 61/100

a The information was used to decide when the first barrier for
unfolding was passed.
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Figure 3. Structural snapshots along the three pathways. The images displayed in the present paper were prepared with the cmoil/zmoil program
and the graphic display module of MOIL.47 (a) Solvated structure of the helical conformation. For clarity the solvent was removed from all the
structures that follow. Note also that in path 1 (b) the N-terminal is on the left while in path 2 (c) the C-terminal is on the left. Sequence of peptide
structures along the (a) first path, (c) second path, and (d) third path.
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The larger number of choices of alternative final conformations
in the experiment makes it likely that the computation will
provide a lower bound to the rate. We expect that simulated
rates will be similar to experimental data if the final structure
chosen in the calculations is one of highly preferred unfolded
shapes, and that computed rates will be slower if multiple
pathways to other unfolded structures contribute similarly to
the rate. Indeed the mean first passage times that we obtain for
one-dimensional unfolding (Table 2) cover a diverse range of
time scales, with the lowest values being comparable to the
experimental rate. The relaxation rate is measured experimen-
tally to be 3.3 × 106 s-1 at 300 K.14,59 Nevertheless, these
estimates are still within typical errors that are seen with other
studies. Errors in the force field can easily change the rates by
a factor of 10. Consider an activated process that follows an
Arrhenius expression for the rate constant. Increasing the barrier
height by 1.5 kcal/mol at 300 K, which is a typical error in
condensed-phase simulations, reduces the rate constant by a
factor of 12. It is therefore unclear whether the errors are a result
of the assumed one-dimensional reaction coordinate, the force
field, the milestoning approximation, or other factors. The
initiation of unfolding events that we examined and their
corresponding rates provide some support to the force field we
used. These rates are not in significant variance with those
observed in straightforward multiple MD trajectories,27 sug-
gesting that the results of our calculations are typical. We
therefore continue to examine the mechanisms of unfolding
along the paths.

The kinetics of the first steps of unfolding (starting from the
helix) are more likely to describe accurately the experimental
behavior when compared to the RP approach. Near the helix
conformation the number of unfolding paths is small, and
parallel independent paths is a reasonable description of the
process. In the discussion below, we therefore focus on the early
event; however, we also analyze properties of the complete
folding pathway as appropriate.

Efficiency of the Calculations. In Figure 4a we show an
example of a simulated first passage time distribution Kij(τ) of
transitions to two nearby milestones. To differentiate between
trajectories that terminate in the forward and the backward
directions, we use negative times to denote termination backward
(on the previous milestone). It is obvious that the time scale of
termination at the nearby milestones is significantly shorter than
the time scale of the overall process (picoseconds versus
microseconds). This illustrates the high efficiency of mileston-
ing. Even with 48 milestones for the first path and 100
trajectories launched from each milestone (with a trajectory time
of about 50 ps, which is on the high side), the accumulated
time to compute the rate is 100 × 48 × 50 ps ) 240 ns, still
significantly shorter that the time to compute a single trajectory
probing the event. Note that for the calculations of the overall
first passage time we need only the zero and the first moments
of the above distribution. Therefore, despite the sparse sampling,

we are able to obtain results with acceptable (but significant)
statistical error bars. For example, halving the number of data
points for the third unfolding path changes the time scale from
86 to 205 µs for the first 50 trajectories and to 79 µs for the
last 50 trajectories. If our estimates are accurate enough, the
time scales also suggest that the first path is significantly more
likely from the kinetics viewpoint, even if thermodynamically
configurations from all paths are observed in the replica
exchange simulations.

An extreme distribution of Kij(τ) from path 3 is shown in
Figure 4b. The trajectories are considerably longer since a
smaller number of milestones (29) was used along a less direct
unfolding pathway compared to path 1. However an estimate
similar to the one we did above suggests that milestoning is
still more efficient than straightforward MD. The maximum
termination time is 22 ns. A complete trajectory along all 29
milestones assuming the maximum time of transition for
terminations at the milestones (which is clearly an upper bound)
requires 638 ns. This is still shorter by about a factor of 100
compared to the overall first passage time (86 µs) we estimated
for this path (Table 2).

Analyses of Structural Features of the Transition. The
analysis of the path includes changes in local variables such as
specific torsion angles and global variables that capture the shape
of the peptide, e.g., the radius of gyration. Besides the
representation of distributions of relevant spatial variables, there
is significant interest in their time dependence. In our analysis
we wish to capture both the spatial distributions of variables at

TABLE 2: Time Scale for Transitions from Helical
Conformations to the First Step in Unfolding and to the
Unfolded Conformationsa

mean first passage time

unfolding time elementary step

path 1 280 ns 455 ps
path 2 7 µs 1.58 ns
path 3 86 µs 8.9 ns

a The times are given for the three paths that we considered.

Figure 4. Local (between milestones) first passage time distributions.
(a) Distribution sampled from milestone 15 of the first path. Negative
times denote termination of the trajectories on the previous milestone
and positive times termination in the forward direction. (b) Distribution
computed from the third path.
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a given instance of time and their time evolution. In each of
the following figures we show several graphs that are color
coded to indicate their position along the reaction coordinate.
The black curve corresponds to the initial helical phase, and
the later time distributions are (in sequential order) red, green,
blue, and orange.

Radius of Gyration. The complete path 1 is divided into
five more-or-less equal segments. For example, the initiation
of unfolding in the first path includes 18 milestones. The data
presented in the graphs are collected from the conformational
statistics generated from milestones 1, 5, 10, 15, and 18. In
Figure 5a we show the variation in the radius of gyration of CR

for several milestones along the complete unfolding path (the
CR Cartesian coordinates define the space in which the reaction
coordinate is optimized). The radius of gyration varies in value
from about 7.5 Å for the most compact conformations to 9.7 Å
for the most extended structures. These are not very large
deviations, but they are nevertheless significant. The broadest
distribution of radii of gyration is one step before complete
unfolding (the blue curve), which is perhaps surprising. As we
emphasized, however, the RP approach does not measure
correctly the diversity of structures of the unfolded state. This
is because the sampling is performed in the neighborhood of
particular structural images. The width of the last distribution
in orange is therefore wider than the folded state but is not wider
than the intermediate (blue) distribution.

Another interesting observation is the nonmonotonic behavior
of the radius of gyration. The sequence of black, red, and green
histograms clearly shows the average radius of gyration shrink-
ing. Hence, the backbone of the peptide (no side chains are
considered) becomes more compact as unfolding is in progress.
The red and green distributions are also not significantly broader
than the distribution of the radii of gyration of the helix (first
milestone sampling). Only the blue and the orange distributions
that lean toward the unfolded state show significant broadening
compared to the initial helical state. In contrast to the red and
green distributions, they show an increase in the average value
of the radius of gyration.

This observation also suggests that the use of the radius of
gyration as an order parameter to probe unfolding is problematic.
The nonmonotonic dependence of the radius of gyration on the
RP makes it difficult to assign a position along the reaction
coordinate given a value for the radius of gyration. The use of
the radius of gyration as a reaction coordinate is therefore
ambiguous. If we consider all the peptide atoms in Figure 5b
(and not only CR), the evolution of the pathway shares properties
similar to those of the backbone-only path. Not surprisingly,
the values of the radius of gyration are somewhat larger (the
side chain atoms are now taken into account). However, we
still observe the same qualitative trends of the compression of
intermediate structures, and an increase in the average radius
of gyration at late phases of the reaction (the blue and orange
distributions). As before, the blue and orange distributions are
also considerably broader.

The analysis of the radius of gyration along the RP puts
forward an interesting experimental suggestion. Since the
radii of gyration (or the overall volume) of the folded and
unfolded states are similar (black and orange distributions),
we do not expect a significant change in the equilibrium
constant relating the two states as a function of pressure. On
the other hand, the intermediate structures seem to have a
smaller volume. Therefore, the theoretical prediction is that
pressure will reduce the time scale of the transition but will
keep (more or less) the equilibrium constant of the folded
and unfolded states intact.

Another widely used measure of size is the end-to-end
distance computed from the nitrogen of the N-terminal to the
carbon of the carboxyl terminal. We show five histogram plots
of the end-to-end distance distributions for path 1 in Figure 6.
There is a clear and abrupt transition from a narrow distribution
of distances at the helix conformation to a broad distribution
of distances that consistently drift to more compact structures.
The broad distributions overlap significantly, making it difficult
to pinpoint a specific position along the reaction progress using
the end-to-end distance. Interestingly, the picture of the end-
to-end distance is significantly different from what we have seen
from the radius of gyration. A similar view is obtained also for
the initiation of unfolding.

The radius of gyration is a useful indicator of the compactness
of the structure. However, other measures of shape can be useful.
Honeycutt and Thirumalai60 introduced two new shape measures
constructed from the eigenevalues λi of the tensor of inertia (in
addition to the radius of gyration). These measures were found
useful in a number of studies of complex macromolecules.61

The first is denoted by ∆ and is defined by

Figure 5. Probability density of the radius of gyration as a function
of progress along the reaction coordinate for the first path. (a) Only CR
atoms are included in the calculation of the radius of gyration. (b) All
atoms are included. The black histogram is the distribution for the
helical conformation. Red, green, blue, and orange histograms follow
sequentially the black curve along the path.
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∆ ) 3
2

∑
i)1,2,3

(λi - λ¯)2

( ∑
i)1,2,3

λi)
2

(10)

The eigenvectors of the tensor of inertia are λi. The average
over the three eigenvalues is λj. If the object is a sphere, all the
eigenvalues are the same and ∆ is zero, which is also its
minimum. In Figure 7 we show that the unfolding transition
starts at reasonably high values of ∆ and sequential distributions
are shifted to lower values. The lower values indicate shapes
that are more spherical than the initial (and also the final) state.
Indeed the significant deviations from a spherical shape of the
initial helix milestone (the black histogram) and of the final
unfolded milestone (orange bins) are similar in size and
distribution. For the initiation of the first path (Figure 7b) we
observe monotonic drift to more spherical shapes.

Another shape measure introduced by Honeycutt and Thiru-
malai is S:

S ) 27

∏
i)1,2,3

(λi - λ¯)

( ∑ λi)
3

(11)

In contrast to the ∆ parameter, S can be negative, for example,
if one (and only one) of the eigevalues is significantly smaller
than the other two (and from the average). A “pita bread” shape

will have a negative S. It is therefore of interest that our analysis
never found negative S values, suggesting a transition from cigar
shapes to closely spherical conformations. In Figure 8 we show
that the changes (given only for the path initiation phase) clearly
separate the states along the beginning of the unfolding pathway.
The swollen configurations of the unfolded state were similar
to those of the folded state using the measures of the radius of
gyration and ∆. However, the last measure and the end-to end
distance put the unfolded state in roughly the same domain as

Figure 6. Probability density of the end-to-end distance as a function
of the reaction coordinate: (a) initiation of the unfolding pathway (up
to milestone 18), (b) complete unfolding pathway of the first path. The
histograms and colors are the same as in Figure 5.

Figure 7. Probability density of the shape measure ∆ for the first path:
(a) complete path, (b) path initiation (up to milestone 18; also only
four distributions are used for clarity, no orange). The histograms and
colors are the same as in Figure 5.

Figure 8. Probability density of the shape measure S for the initiation
of the first path. The histograms and the colors are the same as in Figure
5.
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the intermediates.
It is also intriguing to examine local torsions. Peptide

conformations are usually determined by the value of the ψ
dihedral angles. The variations in ω are negligible, and the
fluctuations in � values are typically smaller than those of ψ.
Even with the reduction in the number of relevant torsions, there
are still 21 ψ torsions in the peptide under consideration, and
we examined all of them. Detailing fluctuations of all 21 torsions
in this paper can be exhausting and is not necessary. This is
because these transitions tend to be local and we focus on the
initial events of unfolding and the few active torsions. In Figure
9a we show the evolution of the distribution for the first torsion
of interest ψ1. The plot is surprising since the final distribution
of the dihedral angle is concentrated near negative values of a

helical conformation. Of course, also the starting distribution
is helical, making the unfolding process strongly nonmonotonic
(going from a helix to an extended chain and back to a helix
from the perspective of the first torsion). Only intermediate
distributions (blue and red) “leak” to the extended chain but
still maintain their hold in the helical configurations. The
dihedral angle that does most of the work for initiation of the
unfolding process is ψ4. In Figure 9b we show a clear drift from
a narrow distribution in the neighborhood of the helix to a
diffusive (red) distribution that covers most of the accessible
torsion space to different narrow distributions localized at the
extended � sheet configurations. Torsion angles of residue 6
and higher are unaffected by the unfolding of the edge of the
helix (Figure 9c). Similar localized transitions of dihedral angles
assisted by large fluctuations of nearby torsions were found in
other cases.

Concluding Remarks

We have illustrated how the combination of reaction paths
and milestoning allows us to study in atomic detail the unfolding
of a helical peptide. We are able to compute experimentally
verifiable kinetics at a long time scale that will be instrumental
in calibrating and assessing force fields. An interesting observa-
tion that our analysis found is that the intermediate structures
are more compact compared to the initial (folded) and the final
(unfolded) states. This qualitative prediction of more compact
transitional states suggests that the kinetics can be made faster
if the pressure in the system increases. Increasing the pressure
will not affect significantly the equilibrium between the folded
and unfolded configurations. Three paths are considered, N-
terminal, C-terminal, and unfolding from the middle. The
significantly shorter time scale of the first path and the proximity
of the time scale to the experimental unfolding rate suggest that
the N-terminal path is highly significant in accord with stochastic
path calculations.31 It will be of considerable interest to extend
this study to a network of structural images representing
milestones between folded and unfolded configurations with
time courses of transitions determined by first passage time
distributions.
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